Método de Newton Modificado p/ Raízes Multiplas
Publicado por Rafael Amorim 28/03/2005
[ Hits: 11.567 ]
Homepage: http://www.rafa-amorim.com.br/
O Algoritmo foi desenvolvido para cálcular raízes multiplas de polinômios com grau menor ou igual a 6, através do Método de Newton Modificado. Espero que seja de grande ajuda!!!
#include <stdio.h>
#include <math.h>
double calculafx(double coef[6], double p0){
double fx;
int i;
fx = coef[6];
for(i= 5;i>=0;i--){
fx = (p0*fx) + coef[i];}
return fx;}
double calculadfx(double coef[6], double p0){
double fx, dfx;
int i;
fx = coef[6];
dfx = coef[6];
for(i= 5;i>=1;i--){
fx = (p0*fx) + coef[i];
dfx = (p0*dfx) + fx;}
return dfx;}
double calculaddfx(double coef[6], double p0){
double fx, dfx, ddfx;
int i;
fx = coef[6];
dfx = coef[6];
ddfx = coef[6];
for(i= 5;i>=2;i--){
fx = (p0*fx) + coef[i];
dfx = (p0*dfx) + fx;
ddfx = (p0*ddfx) + 2*dfx;}
return ddfx;}
double modulo(double x){
if (x>=0.0){
return (x);}
else{
return (-1.0*x);}}
void main(void)
{
int n, op, grau, i;
double e, numer, denom, p0, p, fx, dfx, ddfx, tol, coef[6];
printf("\e[H\e[2J");
tol = 0.000001;
printf("Digite 0 p/ polinômio ou 1 p/ exponecial: ");
scanf("%i", &op);
if (op>0){
printf("\nEntre com o ponto inicial: ");
scanf("%lf", &p0);
fx = exp(p0) - p0 -1;
dfx = exp(p0) -1;
ddfx = exp(p0);
n =1;
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
printf("\nP%i %lf\n", (n-1), p0);
e = modulo(p-p0);
while (n<20 && e>=tol) {
p0 = p;
fx = exp(p0) - p0 -1;
dfx = exp(p0) -1;
ddfx = exp(p0);
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
n++;
e = modulo(p-p0);
printf("P%i %lf\n", (n-1), p0);}
printf("\nAproximação p/ raíz é %e\n", p);
printf("\nAproximação da f(x) no ponto é %e\n", fx);
printf("Com %i iterações\n\n", n);}
else{
printf("Entre com o grau do polinômio: ");
scanf("%i", &grau);
for(i = 0 ; i <= 6 ; i++){
coef[i] = 0;
}
for(i = 0 ; i <= grau ; i++){
printf("\nEntre com o coeficiente a%i: ", i);
scanf("%lf",&coef[i]);
}
printf("\nEntre com o ponto inicial: ");
scanf("%lf", &p0);
n = 1;
fx = calculafx (coef,p0);
dfx = calculadfx (coef,p0);
ddfx = calculaddfx (coef,p0);
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
printf("\nP%i %lf\n", (n-1), p0);
e = modulo(p-p0);
while (n<20 && e>=tol) {
p0 = p;
fx = calculafx (coef,p0);
dfx = calculadfx (coef,p0);
ddfx = calculaddfx (coef,p0);
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
n++;
e = modulo(p-p0);
printf("P%i %lf\n", (n-1), p0);
}
printf("\nAproximação p/ raíz é %e\n", p);
printf("\nAproximação da f(x) no ponto é %e\n", fx);
printf("Com %i iterações\n\n", n);
}}
Google Code Jam 2010 - Africa Classification Round
Busca em texto - Lista encadeada
Gerenciamento de Área de Alocação Dinâmica (Listas Encadeadas)
KDE Plasma - porque pode ser a melhor opção de interface gráfica
Gentoo: detectando impressoras de rede e como fixar uma impressora por IP
Como o GNOME conseguiu o feito de ser preterido por outras interfaces gráficas
Por que sua empresa precisa de uma PKI (e como automatizar EMISSÕES de certificados via Web API)
Instalando NoMachine no Gentoo com Systemd (acesso Remoto em LAN)
Interface gráfica com problema (2)
Instalar Linux em notebook Sony Vaio VPCEG13EB (13)
Vou destruir sua infância:) (7)









