Enviado em 09/01/2015 - 11:10h
Antes de tudo , bom dia pessoal.----------------------------------------------------------------------------------------------------------------- \documentclass{article} \usepackage[utf8]{inputenc} \usepackage{lscape} %\usepackage{rotating} %\usepackage{rotfloat} %\usepackage{natbib} \usepackage{graphicx} \begin{document} %\begin{sidewaystable} %\begin{table}[f!] %\begin{sideways} %\begin{landscape} \begin{table}[h] %\begin{sidewaystable} %\rotatebox{90}{ \scalebox{0.85}{ \begin{tabular}{|l|l|l|l|l|} \hline \ Distribuição & fdp & parâmetro & FGM & assimetria\\ \hline Bernoulli & $p^k (1-p)^{1-k}$ & $p \in (0,1)$ & $q+pe^t$ & $\frac{1-2p}{\sqrt{pq}}$\\ \hline \ Binomial & ${n\choose k}p^k(1-p)^{n-k}$ & $p \in (0,1)$ & $(1-p + pe^t)^n \!$ & $\frac{1-2p}{\sqrt{np(1-p)}}$ \\ \hline Geometrica & $(1 - p)^{k-1}\,p\!$ & $p \in (0,1)$ & $\frac{pe^t}{1-(1-p) e^t}\!$ & $\frac{2-p}{\sqrt{1-p}}\!$\\ \hline Binomial negativa & ${k+r-1 \choose k}\cdot (1-p)^r p^k,\!$ & r$\geq$0, $p \in (0,1)$ & $\biggl(\frac{1-p}{1 - p e^t}\biggr)^{\!r}$ & $\frac{1+p}{\sqrt{pr}}$ \\ \hline Poisson & $\frac{\lambda^k}{k!} e^{-\lambda}$ & $\lambda\geq$0, $k\geq$0 & $\exp(\lambda (e^{t} - 1))$ & $\lambda^{-1/2}$\\ \hline Exponencial & $\mathrm \lambda e^{-\lambda x}$ & $\lambda\geq$1,x$\geq$0 & $\frac{\lambda}{\lambda-t}$ & 2\\ \hline Normal & $\frac{1}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$ & $\mu\in$R , $\sigma^2\geq$0 & $\exp\{ \mu t + \frac{1}{2}\sigma^2t^2 \}$ & 0\\ \hline Gama & $\frac{1}{\Gamma(k) \theta^k} x^{k \,-\, 1} e^{-\frac{x}{\theta}}$ & k$\geq$0, $\theta\geq$0 & $\scriptstyle (1 \,-\, \theta t)^{-k}$ & $\scriptstyle \frac{2}{\sqrt{k}}$ \\ \hline Beta & $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{ Beta(\alpha,\beta)}$ & $\alpha\geq$0, $\beta\geq$0 & $1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$ & $\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}$\\ \hline Uniforme & $\frac{1}{a-b}$, a$\leq$x$\geq$b & $-\infty < a < b < \infty$ &$\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t(b-a)},\text{para }$ t $\neq$ 0 &0 \\ \hline Chi-quadrado &$\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}\; x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$ &k $\in$ N (graus de liberdade) &(1-2t)^{k/2}, t<1/2 & $\scriptstyle\sqrt{8/k}$ \\ \hline Cauchy & $\frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\!$ & $\displaystyle$ x $\in$ ($-\infty$, $+\infty$)\! & não existe & indefinido \\ \hline Log-Normal &$\frac{1}{x\sigma\sqrt{2\pi}}\ e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}$ &x $\in$ (0, $\infty$) &não está definida nos números reais & $(e^{\sigma^2}\!\!+2) \sqrt{e^{\sigma^2}\!\!-1}$ \\ \hline Logistica &$\frac{e^{-\frac{x-\mu}{s}}} {s\left(1+e^{-\frac{x-\mu}{s}}\right)^2}\!$ &x $\in$ (0, $\infty$) &$e^{\mu t}\operatorname{B}(1-st, 1+st)$, st $\in$(-1,1) &0 \\ \hline Pareto & $\frac{\alpha\,x_\mathrm{m}^\alpha}{x^{\alpha+1}}$, x$\ge x_m$ &$x \in [x_\mathrm{m}, +\infty$) &$\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)$ &$\frac{2(1+\alpha)}{\alpha-3}\,\sqrt{\frac{\alpha-2}{\alpha}}$, $\alpha>3$ \\ \hline Weibull &$\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^{k}}$, x$\geq$0 &$x \in [0, +\infty)\$ &$\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!}\Gamma(1+n/k), \ k\geq$1 &$\frac{\Gamma(1+3/k)\lambda^3-3\mu\sigma^2-\mu^3}{\sigma^3}$ \\ \hline \end{tabular} } %\end{sidewaystable} \end{table} %\end{sideways} %} \end{landscape} \end{document}
Enviado em 09/01/2015 - 18:03h
Você precisa rever a sintaxe da fórmula na última linha da tabela. Não sei qual é o problema porque não sei que fórmula é essa :P\hline Bernoulli & $p^k (1-p)^{1-k}$ & $p \in (0,1)$ & $q+pe^t$ & $\frac{1-2p}{\sqrt{pq}}$ \\ \hline Binomial & ${n\choose k}p^k(1-p)^{n-k}$ & $p \in (0,1)$ & $(1-p + pe^t)^n \!$ & $\frac{1-2p}{\sqrt{np(1-p)}}$ \\
Enviado em 14/01/2015 - 10:24h
Obrigado pela resposta.Consegui arrumar a tabela, mas o texnic center ainda aponta 24 erros dos quais não consigo achar.Segue o código:\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{lscape} %\usepackage{rotating} %\usepackage{rotfloat} %\usepackage{natbib} \usepackage{graphicx} \begin{document} %\begin{sidewaystable} %\begin{table}[f!] %\begin{sideways} %\begin{landscape} \begin{table}[h] %\begin{sidewaystable} % \rotatebox{90}{ \caption{Coeficiente de Assimetria de momentos de Pearson $(\gamma_1)$ para distribuições comuns em probabilidade}\\ \scalebox{0.65}{ \begin{tabular}{|l|l|l|l|l|l|} \hline Distribuicao & fdp & parametro & $M_X(t)$ & $\gamma_1$ &Suporte\\ \hline \ Bernoulli & $p^x (1-p)^{1-x}$ & $p \in (0,1)$ & $q+pe^t$ & $\frac{1-2p}{\sqrt{pq}}$ & $x\in\left\{0,1\right\}$\\ \hline Binomial & ${n\choose k}p^x(1-p)^{n-x}$ & $p\in(0,1)$ & $(1-p + pe^t)^n$ & $\frac{1-2p}{\sqrt{np(1-p)}}$ & $x\in\left\{0,...,n\right\}$ \\ \hline Geometrica & $(1 - p)^{x-1}p$ & $p\in(0,1)$ & $\frac{pe^t}{1-(1-p) e^t}\!$ & $\frac{2-p}{\sqrt{1-p}}\!$ & $x\in\left\{1,2,3,...\right\}$\\ \hline Binomial negativa & ${x+r-1 \choose x}\cdot (1-p)^r p^x$ & $p \in (0,1)$ & $\biggl(\frac{1-p}{1 - p e^t}\biggr)^{\!r}$ & $\frac{1+p}{\sqrt{pr}}$ & $x\geq0$ \\ \hline Hiper Geometrica &${{{X \choose x} {{N-X} \choose {n-x}}}\over {N \choose n}}$ & $N\in\left\{0,1,2,\ldots\right\}$,$X\in\left\{0,1,2,\ldots,N\right\}$ &$\frac{{N-X \choose n} \scriptstyle{\,_2F_1(-n, -X; N - X - n + 1; e^{t}) } } {{N \choose n}} \,\!$ & $\frac{(N-2K)(N-1)^\frac{1}{2}(N-2n)}{[nK(N-K)(N-n)]^\frac{1}{2}(N-2)}$ & $\scriptstyle{x\, \in\, \left\{\max{(0,\, n+X-N)},\, \dots,\, \min{(n,\, X )}\right\}}$ \\ \hline Poisson & $\frac{\lambda^x}{x!} e^{-\lambda}$ & $\lambda\geq$0& $\exp(\lambda (e^{t} - 1))$ & $\lambda^{-1/2}$ & $x\geq0$\\ \hline Uniforme & $\frac{1}{b-a}$ &$-\infty<a<b<\infty$ & &0 &$x\in(a,b)$ \\ \hline Exponencial & $\mathrm \lambda e^{-\lambda x}$ & $\lambda\geq1$ & $\frac{\lambda}{\lambda-t}$ & 2 & $x\geq0$ \\ \hline Normal & $\frac{1}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$ & $\mu\inR$ , $\sigma^2\geq0$ & $\exp\{ \mu t + \frac{1}{2}\sigma^2t^2 \}$ & 0 &$x\in$R \\ \hline Gama & $\frac{1}{\Gamma(k) \theta^k} x^{k \,-\, 1} e^{-\frac{x}{\theta}}$ & k$\geq$0, $\theta\geq$0 & $\scriptstyle (1 \,-\, \theta t)^{-k}$ & $\scriptstyle \frac{2}{\sqrt{k}}$ &$x\in(0,\infty$)\\ \hline Beta & $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{ Beta(\alpha,\beta)}$ & $\alpha\geq$0, $\beta\geq$0 & $1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$ & $\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}$ &$x\in(0,1)$\\ \hline Chi quadrado &$\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}\$; x^{$\frac{k}{2}-1}$ e^{-$\frac{x}{2}}$ &$k\in N$ &(1-2t)^{k/2} & $\scriptstyle$$\sqrt{8/k}$ & $x\in[0,\infty)$ \\ \hline Cauchy & $\frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\!$ & $\gamma > 0$,$x_0\!$$\in$ R & não existe & indefinido & $x\in(-\infty, +\infty)$ \\ \hline Log-Normal &$\frac{1}{x\sigma\sqrt{2\pi}}\ e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}$ &$\sigma\geq0$, $\mu\in$R &não definida em R & $(e^{\sigma^2}\!\!+2) \sqrt{e^{\sigma^2}\!\!-1}$ &$x\in(0,\infty)$\\ \hline Logistica &$\frac{e^{-\frac{x-\mu}{s}}} {s\left(1+e^{-\frac{x-\mu}{s}}\right)^2}\!$ & $s > 0$,$\mu\in$R &$e^{\mu t}\operatorname{B}(1-st, 1+st)$ &0 & $x\in(-\infty,+\infty)$ \\ \hline Pareto &$\frac{\alpha\,x_\mathrm{m}^\alpha}{x^{\alpha+1}}$&$x_\mathrm{m}>$0,$\alpha>$0 &$\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)$ &$\frac{2(1+\alpha)}{\alpha-3}\,\sqrt{\frac{\alpha-2}{\alpha}}$ & $x\in [x_\mathrm{m}, \infty)$\\ \hline Weibull &$\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^{k}}$ & $k>0$,$\lambda>0$ & $\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!}\Gamma(1+n/k)$ &$\frac{\Gamma(1+3/k)\lambda^3-3\mu\sigma^2-\mu^3}{\sigma^3}$ & $x\in$[0,\infty)$\\ \hline \end{tabular} } %\end{sidewaystable} \end{table} Seja uma variável aleatória $x$.Sua função geradora de momentos é dada por:\\ $\[M_{X}(t)=\mathbb{E}\left(e^{tX}\right)=\sum_{x\in\mathcal{R}_X}e^{tx}p(x)/$, no caso discreto;\\ \\$\[M_{X}(t)=\mathbb{E}[e^{tX}]=\int_{-\infty}^{\infty}e^{tx}f(x)dx\]$, paro o caso contínuo. %\end{sideways} %} %\end{landscape} \end{document}
Enviado em 14/01/2015 - 11:59h
! LaTeX Error: There's no line here to end. l.22 \scalebox {0.65}{
\caption{Coeficiente de Assimetria de momentos de Pearson $(\gamma_1)$ para distribuições comuns em probabilidade}\\
\caption{Coeficiente de Assimetria de momentos de Pearson $(\gamma_1)$ para distribuições comuns em probabilidade}
! Undefined control sequence. <argument> ...\mu \in $R &$e^{\mu t}\operatorname {B}(1-st, 1+st)$ &0 & $x\i... l.52 }
! Missing $ inserted. <inserted text> $ l.52 }
$x\in$[0,\infty)$
! LaTeX Error: Bad math environment delimiter. l.59 $\[ M_{X}(t)=\mathbb{E}\left(e^{tX}\right)=\sum_{x\in\mathcal{R}_X}e^{tx...
! LaTeX Error: Bad math environment delimiter. l.60 \\$\[ M_{X}(t)=\mathbb{E}[e^{tX}]=\int_{-\infty}^{\infty}e^{tx}f(x)dx\]$...
Criar entrada (menuentry) ISO no Grub
Como gerar qualquer emoji ou símbolo unicode a partir do seu teclado
Instalar o VIM 9.1 no Debian 12
Como saber o range de um IP público?
Muitas dificuldades ao instalar distro Linux em Notebook Sony Vaio PCG-6131L (VPCEA24FM)
Slackpkg+ (Slackpkg Plus) está de volta!
Como dividir duas janelas igualmente e lado-a-lado na sua tela
instalar o Linux em computadores Acer novos (2)
compilação samba 4.22 rock linux 9.5 (4)